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 Time variations of low cloud feedback depend on the relative importance between the forced and unforced feedback components.
 For 30-yr windows ending before the 1980s, the SST patterns are dominated by unforced variations, which are representative of an ENSO-like pattern,
corresponding to weak low-level stability in the tropics.
 For 30-yr windows ending after the 1980s, the forced signals have become stronger, outweighing the unforced signals in the 2010s. Forced SST patterns
are characterized by relatively uniform warming with an enhancement in the WP, accounting for more stabilizing low cloud feedback.
 The time-evolving SST pattern due to the increasing importance of forced signals is the dominant contributor to the recent stabilizing shift of low cloud
feedback in the LEs.
 The observed SST patterns consistently suggest a reduction in the relative role of unforced ENSO-like variability since the 1980s. However, the emergent
observed SST patterns highlight the WP warming trend and the EP cooling trend, which actuates a stronger stabilizing shift of low cloud feedback that lies
outside the model ensembles, implying the systematic bias of the forced SST patterns obtained from the models.

(When LEs are not available, trend /detrend components can
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* Similarity in LESs:
3 LEs show similar pattern
transition (being dominated

by unforced comp. to forced
comp.)
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Spread in LESs:

WP warming in unforced SST
pattern is weaker in CESM2-
LE (more positive unforced
Cg;s), followed by MPI-GE,
then GISS-LE (less positive
unforced Cgjs).
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* Compare LEs & OBS:

While the time variations
of r are similar between
LEs and observations, the
observations suggest a
recent WP warming/EP
cooling trend that is not

included in the forced
SST pattern of LEs.
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