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ABSTRACT: Atmospheric models forced with observed sea surface temperatures (SSTs) suggest a trend toward a more-
stabilizing cloud feedback in recent decades, partly due to the surface cooling trend in the eastern Pacific (EP) and the
warming trend in the western Pacific (WP). Here, we show model evidence that the low-cloud feedback has contributions
from both forced and unforced feedback components and that its time variation arises in large part through changes in
the relative importance of the two over time, rather than through variations in forced or unforced feedbacks themselves.
Initial-condition large ensembles (LEs) suggest that the SST patterns are dominated by unforced variations for 30-yr
windows ending prior to the 1980s. In general, unforced SSTs are representative of an ENSO-like pattern, which corre-
sponds to weak low-level stability in the tropics and less-stabilizing low-cloud feedback. Since the 1980s, the forced signals
have become stronger, outweighing the unforced signals for the 30-yr windows ending after the 2010s. Forced SSTs are
characterized by relatively uniform warming with an enhancement in the WP, corresponding to a more-stabilizing low-
cloud feedback in most cases. The time-evolving SST pattern due to this increasing importance of forced signals is the dom-
inant contributor to the recent stabilizing shift of low-cloud feedback in the LEs. Using single-forcing LEs, we further find
that if only greenhouse gases evolve with time, the transition to the domination of forced signals occurs 10–20 years earlier
compared to the LEs with full forcings, which can be understood through the compensating effect between aerosols and
greenhouse gases.
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1. Introduction

Projections of future warming in response to forcing de-
pend on the magnitude of radiative feedbacks and, in particu-
lar, on how clouds will respond to changing climate conditions
(Bony and Dufresne 2005; Sherwood et al. 2014; Forster et al.
2021). Previous research has shown that radiative feedbacks
have considerable temporal variations (Andrews et al. 2015;
Zhou et al. 2016; Andrews et al. 2018; Dong et al. 2020; Gregory
et al. 2020; Rugenstein et al. 2020; Andrews et al. 2022), which
adds to the uncertainty of climate prediction (Frey et al. 2017;
Sherwood et al. 2020; Forster et al. 2021; Gjermundsen et al.
2021; Watanabe et al. 2021; Armour et al. 2024).

Radiative feedbacks vary over time in both the historical
period (since around 1850) and future warming simulations.
In most fully coupled atmosphere–ocean general circulation
models (AOGCMs) where the atmospheric carbon dioxide
(CO2) concentration is abruptly quadrupled and kept constant

for the rest of the simulation, the net radiative feedback be-
comes less stabilizing over time (i.e., a trend toward higher ef-
fective climate sensitivity) (Geoffroy et al. 2013; Andrews
et al. 2015; Ceppi and Gregory 2017; Dong et al. 2020; Rugenstein
et al. 2020). In the historical period, the feedback shows strong
variability on decadal time scales. Most AOGCM historical simu-
lations suggest a shift toward less-stabilizing net radiative feed-
back over the past few decades (Gregory et al. 2020; Dong et al.
2021; Salvi et al. 2023). However, atmospheric general circulation
models (AGCMs) with prescribed observational SST and sea ice
instead indicate a trend toward a more-stabilizing net radiative
feedback (lower effective climate sensitivity) during the same
time period (Zhou et al. 2016; Gregory and Andrews 2016;
Andrews et al. 2018, 2022). The time evolution of net radiative
feedback has been interpreted through changes in SST pat-
terns, also referred to as the pattern effect (Stevens et al. 2016;
Zhou et al. 2017; Dong et al. 2019). The divergent trends of
net radiative feedback between the abovementioned AOGCM
and AGCM simulations in recent decades can be explained by
discrepancies between the modeled and observed SST pat-
terns (Dong et al. 2021).

The potential for radiative feedbacks to vary over time as
the SST pattern evolves can be interpreted in terms of a
forced climate response. For instance, as is seen most clearly
under an abrupt CO2 doubling or quadrupling, SST patterns
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and thus radiative feedbacks vary as the ocean adjusts on
a range of time scales (Held et al. 2010; Winton et al. 2010;
Armour et al. 2013; Geoffroy et al. 2013; Rose et al. 2014; Rose
and Rayborn 2016; Rugenstein et al. 2016; Lin et al. 2019, 2021;
Eiselt and Graversen 2023). Moreover, non-CO2 forcing agents,
such as anthropogenic aerosols, Antarctic meltwater, or volca-
nic eruptions, can produce time-varying SST patterns and radia-
tive feedbacks that are distinct from those from CO2 forcing
(Shindell 2014; Gregory et al. 2016; Marvel et al. 2016; Gregory
et al. 2020; Dong et al. 2022; Günther et al. 2022; Salvi et al.
2023; Zhou et al. 2023). Another branch of literature has also
shown that internal variability can influence radiative feedbacks
through its influence on evolving SST patterns (Huber et al.
2014; Dessler et al. 2018; Gregory et al. 2020) and that, in
general, the spatial patterns and magnitudes of radiative feed-
backs under different modes of internal variability (“unforced
feedbacks”) are distinct from those induced by radiative forcing
(“forced feedbacks”) (Donohoe et al. 2014; Xie et al. 2016;
Proistosescu et al. 2018; Dessler 2020; Wills et al. 2021; Uribe
et al. 2022).

Here, we investigate another contribution to the time varia-
tion of radiative feedbacks. In light of the fact that forced and
unforced feedbacks have different magnitudes, it is possible
that a portion of net radiative feedback time evolution may
stem from a changing relative importance of internal variabil-
ity and forced response}rather than through variations in the
magnitude of forced feedbacks or unforced feedbacks alone.
For instance, early in the historical record when radiative
forcing is small, we might expect the net radiative feedback to
largely reflect feedbacks associated with internal variability.
However, later in the historical record and in the future when
radiative forcing is strong, we might expect the net radiative
feedback to largely reflect feedbacks induced by the forcing.
A key question is as follows: How important is such a shift in
the relative importance of internal variability and forced re-
sponse to the overall time variation of radiative feedbacks?

To answer the question, we begin by laying out a statistical
framework to illustrate how forced and unforced variations
combine to yield the net global radiative feedback (section 2).
Results on the relative importance of the forced and unforced
signals from initial-condition large ensembles are then shown.
In section 3, we focus on the time evolution of low-cloud feed-
back and decompose the feedback change into components re-
lated to changes in forced response, changes in unforced
variability, and changes in their relative importance. Section 4
highlights the role of the SST pattern effect in connecting the
time-evolving SST pattern and low-cloud feedback. In section 5,
we further explore how various forcing agents may interact to
modify the relative importance of the forced and unforced varia-
tions. In section 6, we summarize our findings and discuss the
broader implications of our research.

2. Relative importance of forced and unforced responses

a. Initial-condition large ensembles

To isolate the forced responses from the unforced internal var-
iability, we used single-model, initial-condition large ensembles,

including Community Earth System Model, version 2 (CESM2),
large ensemble (Rodgers et al. 2021), Max Planck Institute Earth
System Model version 1.1 (MPI-ESM1.1; Maher et al. 2019), and
simulations from the National Aeronautics and Space Adminis-
tration (NASA) Goddard Institute for Space Studies Model
E2.1-G (GISS-E2.1-G; Kelley et al. 2020; Bauer et al. 2020;
Miller et al. 2021). The initial-condition large ensembles aim to
create a large number of simulations with identical forcing and
slightly different atmospheric and/or oceanic initial conditions.
By taking the ensemble mean, the relative contribution of inter-
nal variability is expected to weaken to 1/

���
N

√
, where N is the

number of ensemble members (Gregory et al. 2020). Here, large
ensembles from CESM2 (N 5 100), MPI-ESM1.1 (N 5 100),
and GISS-E2.1-G (N5 48) all have relatively large N. Thus, any
target field X in large ensemble simulations can be decomposed
into two parts: 1) the ensemble-mean values of X (denoted as
hXi), which approximates the forced responses Xf, and 2) the
anomalies relative to the ensemble mean of X (denoted as X*),
which approximates unforced variabilityXu:

X 5 hXi 1 X*, (1.1)

Xf ’ hXi, (1.2)

Xu ’ X*: (1.3)

b. Radiative feedback estimation

The evaluation of net radiative feedback often starts with the
global-mean energy balance equation N 5 F 1 R ’ F 1 lT
(Gregory et al. 2004), where N is the net downward radiation at
the top of the atmosphere (TOA), F is the effective radiative
forcing, and R represents the radiative responses (positive
downward). The term R is often approximated as lT, where T
indicates the global-mean surface temperature responses that
act to dampen or amplify R through stabilizing or destabilizing
feedback processes, denoted as l. Here, the net radiative feed-
back l is negative for a stable climate; thus, a more-negative
(more-stabilizing) l implies a less-sensitive climate.

In nonequilibrium climate states, such as for historical
warming when the climate is still adjusting to forcing, l is often
quantified using the difference between two states, denoted as
subscript 1 and 2 (Gregory et al. 2002; Dessler et al. 2018):

l 5
(R2 2 R1)
(T2 2 T1)

5
(N2 2 N1) 2 (F2 2 F1)

(T2 2 T1)
: (1.4)

At the same time, l can be written in a differential form,
where the derivatives can be estimated through linear regres-
sions (Gregory et al. 2004; Rugenstein and Armour 2021):

l 5
dR
dT

5
d(N 2 F)

dT
: (1.5)

c. Forced and unforced contributions to OLS
regressions: Theory

The ordinary least squares (OLS) regression is widely used
when examining the regression form of radiative feedback
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(e.g., Sherwood et al. 2020). In a similar regression form, the
SST pattern is usually calculated by regressing the map of
regional SSTs against the global-mean values of surface
temperature (e.g., Andrews et al. 2015). The use of OLS re-
gression relies on the assumption that the independent vari-
able (i.e., the x variable) is uncorrelated with the error term
in the regression model, so the error term only considers un-
predictable random error (i.e., the noise of the dependent
variable). Thus, OLS regression estimates of radiative feed-
backs may be biased when forced responses and unforced
variability are tangled in both the independent variable
(e.g., global-mean surface temperature) and the dependent
variable (e.g., radiation). In the following text, we will quan-
tify the relative contribution of forced and unforced signals
to OLS regressions. We will also show how the two compo-
nents jointly drive the time variation of SST patterns and ra-
diative feedbacks.

Take the regression of a given field X against global-mean
surface temperature Tg in a given historical time period, for
example. Both the independent variable Tg and the depen-
dent variable X consist of two parts that evolve with time: a
forced response to net radiative forcing (from greenhouse
gases, aerosols, volcanic eruptions, land use, etc.) and an un-
forced response related to internal variability. We can express
the two components as follows:

Tg 5 Tg, f 1 Tg,u, (1.6)

X 5 Xf 1 Xu, (1.7)

where the subscripts f and u indicate the forced and unforced
responses, respectively. By substituting the full response with
the forced and unforced components, the regression-based es-
timate of dX/dTg can be written as

dX
dTg

5
cov(X, Tg)
var(Tg)

5
cov(Xf 1 Xu, Tg,f 1 Tg,u)

var(Tg,f 1 Tg,u)

5
cov(Xf , Tg,f ) 1 cov(Xf , Tg,u) 1 cov(Xu, Tg,f ) 1 cov(Xu, Tg,u)

var(Tg,f ) 1 2 cov(Tg,f , Tg,u) 1 var(Tg,u)
, (1.8)

where cov(x, y) is the covariance between the variables x and
y and var(x) is the variance of x. Both are estimated within a
given time period (e.g., a 30-yr window). Since there is a gen-
eral difference between the time evolution of forced and un-
forced responses, namely, the former is largely driven by
radiative forcings and would be more linear within individual
windows, whereas the latter consists of internal variations
across different time scales (mainly interannual to decadal os-
cillations for a 30-yr window), we assume that the covariance
between the forced and unforced responses is small. Equation
(1.8) can then be expressed as

dX
dTg

5
cov(Xf , Tg,f ) 1 cov(Xu, Tg,u)

var(Tg,f ) 1 var(Tg,u)
1 s, (1.9)

where the residual s accounts for the combined effect from the
three covariances between the forced and unforced responses,
including cov(Tg,f, Tg,u), cov(Xf, Tg,u), and cov(Xu, Tg,f). By re-
arranging Eq. (1.9), the regression estimate can be decomposed
into forced and unforced regressions as follows:

dX
dTg

5
cov(Xf , Tg,f )
var(Tg,f )

var(Tg,f )
var(Tg,f ) 1 var(Tg,u)

1
cov(Xu, Tg,u)
var(Tg,u)

3
var(Tg,u)

var(Tg,f ) 1 var(Tg,u)
1 s

5
dXf

dTg,f

var(Tg,f )
var(Tg,f ) 1 var(Tg,u)

1
dXu

dTg,u

var(Tg,u)
var(Tg,f ) 1 var(Tg,u)

1 s ? (1.10)

Equation (1.10) suggests that the overall regression estimate
is a linear combination of the forced and unforced regres-
sions, with a specific weighting applied to each term. For
forced regression dXf /dTg,f , it is multiplied by the ratio of
forced Tg variance var(Tg,f) to the sum of forced Tg variance
and unforced Tg variance [var(Tg,f) 1 var(Tg,u)]. Similarly,
unforced regression dXu/dTg,u is multiplied by the ratio of un-
forced Tg variance var(Tg,u) to the sum of forced Tg variance
and unforced Tg variance [var(Tg,f) 1 var(Tg,u)]. We can sim-
plify the equation further by writing it as

dX
dTg

5
dXf

dTg,f
r 1

dXu

dTg,u
(1 2 r) 1 s, (1.11)

r 5
var(Tg,f )

var(Tg,f ) 1 var(Tg,u)
: (1.12)

The ratio r and (1 2 r) indicate, respectively, the relative im-
portance of forced and unforced temperature variances during
the interval over which the regression has been performed.
When r is small, the influence of forced regression on overall
regression is weak, and the regression is largely determined by
the unforced variability of X and Tg, and vice versa for large r.
If X is taken to be the net TOA radiation R, the net radia-
tive feedback can be written as a weighted sum of the feed-
back in response to forced variations and the feedback in
response to unforced variations l 5 lfr 1 lu(1 2 r) 1 s.
Similarly, if X represents regional warming, then dX/dTg be-
comes the net warming pattern over the time interval, and it
will likewise be a weighted sum of forced and unforced
components.
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In summary, here we demonstrate how the forced and un-
forced signals jointly affect the strength of the OLS regres-
sion, which is widely used to calculate radiative feedback
(X 5 R) and quantify SST patterns (X 5 SST). For each OLS
regression, changes in either forced regression or unforced re-
gression alter the strength of the overall regression. Even
when both components are constant over time, changes in
their relative importance [quantified as r and (1 2 r)] could
lead to time variation in the overall regression. Note that the
residuals in this study are on average small (Fig. S2 in the on-
line supplemental material), allowing for the separation of
forced regression from unforced regression and suggesting a
generally weak covariance between forced and unforced re-
sponses. For some individual ensemble members, the resid-
uals are comparable to forced and unforced contributions,
which should be interpreted with caution (Figs. 2 and 3).

d. Forced and unforced contributions to OLS
regressions: Model results

Section 2c provides the theory of how the forced and un-
forced Tg variance determines their relative importance in
OLS regressions. Figure 1 shows the model results that echo
the theory. First, the forced and unforced Tg variances in the
three LEs are shown (Figs. 1a–c). Note that to align closely
with the meteorological cloud radiative kernels (Scott et al.
2020; Myers et al. 2021) that we will use in subsequent sec-
tions of the study, we define Tg as the area-weighted average
of near-global (608S–608N) surface temperature over the
ocean. This Tg definition is different from the commonly used
global-mean surface temperature due to the exclusion of land
and polar regions; however, we emphasize that the time evo-
lution of the two is highly consistent (the correlation coeffi-
cient between the two Tg time series exceeds 0.97 in all
ensemble members) and the different Tg definitions do not al-
ter the conclusions (e.g., compare Fig. 1 with Fig. S1). Before
the 1980s, all three LEs suggest a relatively mild forced warm-
ing (less than 0.4 K increase in the forced Tg since 1850; ap-
proximately less than 0.1 K for 30-yr intervals). After the
1980s, the forced Tg continues to increase, and its rate of in-
crease also strengthens.

Figures 1d–f show the total, forced, and unforced Tg varian-
ces calculated in sliding 30-yr windows, where the x axis indi-
cates the end year of each window. For 30-yr windows ending
before 1980 (i.e., before the first vertical green line), the
forced Tg variance is generally weaker than the unforced Tg

variance. However, for windows ending after the 1980s, the
forced Tg variance becomes stronger, while the unforced Tg

variance remains of similar magnitudes. This different time
evolution between forced and unforced Tg variances implies
that forced responses have had more weight in OLS regres-
sions since around the 1980s.

Indeed, the ratio r [defined in Eq. (1.12)], which quantifies
the relative importance of forced signals, remains small for
the 30-yr windows ending before 1980 (Figs. 1g–i). The aver-
aged r before 1980 (i.e., the average over multiple windows)
is 0.18 6 0.02 in CESM2, 0.28 6 0.03 in MPI-ESM1.1, and
0.15 6 0.02 in GISS-E2.1-G, where the ensemble mean and

one standard deviation (STD) across ensembles are shown.
After 1980, r increases rapidly, in parallel with the rapid in-
crease in greenhouse gases (GHG) emissions. The forced and
unforced Tg variances are comparable between the end year
of the 1990s and the end year of the early 2000s (r ; 0.5). As
var(Tg,f) continues to strengthen, var(Tg,f) generally out-
weighs var(Tg,u) in the late 2000s (r . 0.5) and has become
more and more dominant since then. In GISS-E2.1-G, the
overtake of forced signals in the 2000s is less obvious than in
the other two large ensembles. Take the end year of 2010
(1981–2010 window), for example, r 5 0.72 6 0.06 in CESM2,
r 5 0.72 6 0.07 in MPI-ESM1.1, and r 5 0.58 6 0.05 in GISS-
E2.1-G. Despite the weaker r in the 1981–2010 window in
GISS-E2.1-G, all three models show a pronounced increase in
r between the 1951–80 window and the 1981–2010 window
(shown as the two vertical lines in Fig. 1; see the numbers in
Table 1), suggesting an increasing dominance of forced signals
in SST patterns and radiative feedbacks over the past few
decades.

While r is generally weak before the end year of 1980, we
note that there are local r maxima in all three models,
which can be linked to major volcanic eruptions (Gregory
et al. 2016). The first local maximum spans between the
end year of 1890 and the end year of 1910 (i.e., the sliding
30-yr windows from 1861–90 to 1881–1910), arising from
the volcanic eruption of Krakatau in 1883 and the Santa
Maria eruption in 1902. The second local maximum exists
around the end year of 1930 (1901–30 window), which in-
cludes the influences from both the 1902 Santa Maria erup-
tion and the 1912 Novarupta/Katmai eruption. Another
local maximum occurs around the end year of 1991, which
can be related to the 1991 Pinatubo eruption. Furthermore,
there is a local minimum around the end year of 1960, con-
sistent with the decrease in major volcanic eruptions be-
tween 1920 and 1960.

3. Time-evolving low-cloud feedback

a. Forced and unforced contributions to
low-cloud feedback

Previous research has suggested that the responses of
low clouds are the primary source of intermodel spread
in climate sensitivity estimates (Bony and Dufresne 2005;
Caldwell et al. 2016; Zelinka et al. 2016; Forster et al. 2021)
and that the time evolution of net radiative feedback is
mostly driven by changes in cloud radiative feedback (e.g.,
Zhou et al. 2016). Therefore, here we focus on the time
evolution of low-cloud radiative feedback by combining the
annual-mean changes in SST and estimated inversion strength
(EIS; Wood and Bretherton 2006) per unit warming with ob-
servation-based meteorological cloud radiative kernels (Scott
et al. 2020; Myers et al. 2021), as illustrated below:

CSST 5
­R

­SST
dSST
dTg

, (2.1)

CEIS 5
­R
­EIS

dEIS
dTg

: (2.2)
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FIG. 1. Time evolution of forced (red; y axis on the left) and unforced (blue; y axis on the right) Tg in three initial-
condition LEs: (a) CESM2, (b) MPI-ESM1.1, and (c) GISS-E2.1-G. Here, Tg is the area-weighted average of surface
temperature within 608S–608N over the ocean. (d)–(f) Time evolution of the variance of Tg (black), Tg,f (red), and Tg,u

(blue) in the three LEs. The variance is calculated on a sliding 30-yr window. (g)–(i) The ratio of the Tg,f variance
[red; r defined in Eq. (1.12)] and the ratio of the Tg,u variance [blue; (1 2 r)] in the three LEs. (j)–(l) Time evolution
of low-cloud feedback due to changes in full SST pattern CSST (black), forced SST pattern CSST,f (red), and unforced
SST pattern CSST,u (blue) in the three LEs. The term Est. CSST (dashed gray) is calculated as the ensemble mean of
rCSST,f 1 (1 2 r)CSST,u, meaning that the difference between the black and dashed gray lines is the residual term for
ensemble mean. (m)–(o) As in (j)–(l), but for changes in the full EIS pattern CEIS (black), forced EIS pattern CEIS,f

(red), and unforced EIS pattern CEIS,u (blue). Note that the x axis marks the year in (a)–(c), while it denotes the end
year of moving 30-yr windows in (d)–(o). Also, the range of y axis in CEIS is three times larger than in CSST. For each
figure, dark-colored lines indicate the ensemble mean and light-colored lines show each ensemble member. The two
vertical green lines in (d)–(o) mark the end years of 1980 and 2010, which, respectively, indicate the results from
1951–1980 and 1981–2010 windows that we focus on.
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The terms CSST and CEIS indicate the low-cloud radiative
feedbacks due to changes in SST and EIS patterns, respec-
tively. The terms ­R/­SST and ­R/­EIS are the meteorological
cloud radiative kernels that quantify low-cloud radiative re-
sponses to local SST and EIS perturbations, developed by
Scott et al. (2020). Note that the meteorological cloud radia-
tive kernels are evaluated separately in four different observa-
tional datasets, including that from the Clouds and the Earth’s
Radiant Energy System Flux by Cloud Type (CERES-FBCT;
Eitzen et al. 2017), the Moderate Resolution Imaging Spec-
troradiometer (MODIS; Platnick et al. 2015), the International
Satellite Cloud Climatology Project (ISCCP; Young et al. 2018),
and the Advanced Very High Resolution Radiometer Pathfinder
Atmospheres–Extended (PATMOS-x) dataset (Heidinger et al.
2014). We adopt the average of four kernels due to their similar

patterns and overall magnitudes (Scott et al. 2020; Myers et al.
2021). More importantly, since the meteorological cloud radiative
kernels are time-invariant and model-independent, any time de-
pendence of the low-cloud radiative feedback C analyzed here
arises from the time evolution of SST or EIS patterns. The inter-
model spread in C can also be fully attributed to the spread in
SST or EIS patterns.

To evaluate the relative contributions from forced and un-
forced patterns of SST and EIS to the time-evolving C, we
combine Eq. (1.11) with Eqs. (2.1) and (2.2):

CSST 5
­R

­SST

dSSTf

dTg,f
r 1

dSSTu

dTg,u
(1 2 r) 1 s

[ ]

5 CSST,f r 1 CSST,u(1 2 r) 1 e; (2.3)

CEIS 5
­R
­EIS

dEISf
dTg,f

r 1
dEISu
dTg,u

(1 2 r) 1 s

[ ]

5 CEIS,f r 1 CEIS,u(1 2 r) 1 e, (2.4)

where CSST,f is the forced component and CSST,u is the un-
forced component of the low-cloud feedback that arises from
the local impact of the SST pattern. Both are global maps de-
termined by annual-mean kernels and SST patterns. Similarly,
CEIS,f and CEIS,u indicate the forced and unforced components
of the EIS-related low-cloud feedback. The term e represents
the residual and is simply s [Eq. (1.11)] multiplied by time-
invariant meteorological cloud radiative kernels.

The main advantage of our low-cloud feedback evaluation
is to isolate the influences of SST and EIS patterns on low-
cloud feedback from other factors, such as the intermodel
spread of time-evolving radiative forcing (Pincus et al. 2016)
and the uncertainty of low-cloud radiative responses to SST
and EIS perturbations. Moreover, using meteorological cloud
radiative kernels, we have constrained observationally the
dependence of low-cloud radiative effects on meteorology.
However, the caveat is that the low-cloud feedback evaluated
here could be different from the low-cloud feedback esti-
mated exclusively in the models (i.e., allowing for model-
specific coefficients), and the spread of low-cloud feedback
among LEs contributes only in part to the overall intermodel
spread of low-cloud feedback.

b. Similarity and disparity among models

Following Eqs. (2.3) and (2.4), here we review the time var-
iation of low-cloud feedback from each AOGCM large en-
semble and explain the shift in low-cloud feedback over the
past few decades. First, most of the ensemble members in
CESM2 suggest a trend toward more-negative CSST and CEIS

between the end year of 1960 and the end year of 2010, with
the EIS component having a stronger trend (black lines in
Figs. 1j,m). Despite this negative trend in both CSST and CEIS,
we can barely see the corresponding change in either forced
component or unforced component. Instead, we find that the
negative trend of CSST and CEIS is driven by changes in the
relative importance of forced and unforced components. Be-
tween the end year of 1960 and the end year of 2010, there is

TABLE 1. Indices used to explain the time variation of low-
cloud feedback C in the three initial-condition LEs. The term r
is the ratio of the forced Tg variance [Eq. (1.12)]. The terms
CSST and CEIS indicate the low-cloud feedbacks due to changes
in SST and EIS patterns, and the subscripts f and u denote the
forced and unforced components [Eqs. (2.1)–(2.4)]. The “average
(avg)” in rows 3–8 indicates the average of multiple 30-yr sliding
windows before the end year of 1980. Also, the IPWP warming
ratio is calculated as the regional average of dSST/dTg in the WP
convective regions (308S–308N, 508E–1608W) over the tropical
average of dSST/dTg (308S–308N). The pipe symbol | in this table
is followed by the 30-yr window that is used to calculate the
targeted field. Note that the forced components are calculated
based on the ensemble-mean fields; thus, no spread across
ensemble members is shown. For the total and unforced
components, the ensemble-mean values and one STD across
ensembles are shown.

CESM2 MPI-ESM1.1 GISS-E2.1-G

r|1951–80 (1) 0.24 6 0.07 0.38 6 0.08 0.25 6 0.04
r|1981–2010 (1) 0.72 6 0.06 0.72 6 0.07 0.58 6 0.05

CSSTavg
W

m2 K

( )
0.57 6 0.04 0.37 6 0.04 0.20 6 0.04

CSST,f avg
W

m2 K

( )
0.49 0.50 0.44

CSST,uavg
W

m2 K

( )
0.59 6 0.04 0.31 6 0.05 0.14 6 0.04

CEISavg
W

m2 K

( )
20.05 6 0.10 20.57 6 0.10 20.63 6 0.08

CEIS,f avg
W

m2 K

( )
20.62 20.86 20.68

CEIS,uavg
W

m2 K

( )
0.14 6 0.10 20.39 6 0.11 20.62 6 0.08

IPWP|1951–80 (1) 0.44 6 0.11 0.82 6 0.07 0.78 6 0.05
IPWPf|1951–80 (1) 1.09 1.04 0.97
IPWPu|1951–80 (1) 0.30 6 0.10 0.70 6 0.07 0.73 6 0.04
IPWP|1981–2010 (1) 0.77 6 0.10 0.96 6 0.07 0.86 6 0.05
IPWPf|1981–2010 (1) 1.03 1.09 1.03
IPWPu|1981–2010 (1) 0.32 6 0.10 0.74 6 0.08 0.71 6 0.05
IPWP|2070–99 (1) 0.97 6 0.04 1.02 6 0.04 }

IPWPf|2070–99 (1) 1.00 1.06 }

IPWPu|2070–99 (1) 0.47 6 0.11 0.72 6 0.07 }
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a transition from being dominated by unforced temperature
variations (small r) to being dominated by forced temperature
variations (large r; Fig. 1g). When unforced temperature var-
iations dominate, the overall C is largely determined by its un-
forced component; thus, the two have similar magnitudes
(closer blue and black lines when r is small). Similarly, when
forced temperature variations dominate, the overall C is
largely determined by the forced component (closer red and
black lines when r is large). For both CSST and CEIS, since the
unforced component is generally more positive than the
forced component, the decreasing importance of unforced
feedback (i.e., the increasing importance of forced feedback)
in recent decades gives rise to a more-negative (more-stabilizing)
low-cloud feedback during this time.

Similar explanations can be applied to MPI-ESM1.1 and
GISS-E2.1-G. For example, if the unforced feedback compo-
nent is more positive than the forced feedback component,
such as CEIS in CESM2 and MPI-ESM1.1 and CSST in
CESM2 (Table 1), the increasing importance of forced signals
implies a negative trend of the overall low-cloud feedback
(Figs. 1j,m,n). If the forced feedback component is more posi-
tive than the unforced feedback component (e.g., CSST in
MPI-ESM1.1 and GISS-E2.1-G; Table 1), the increasing im-
portance of forced signals then implies a positive trend of the
overall feedback (Figs. 1k,l). If, in the last case, the forced and
unforced feedbacks have similar values (e.g., CEIS in GISS-
E2.1-G; Table 1), the overall feedback would barely change
while r varies over time (Fig. 1o). For all three models, the en-
semble-mean residual e is negligible, shown as the difference
between the gray dashed lines and the black lines in Figs. 1j–o.

By comparing the forced and unforced feedbacks among
the three large ensembles, we also find that the intermodel
spread of the CSST and CEIS arises mostly from the unforced
component instead of the forced component. For SST contribution,
CSST,f is 0.49, 0.50, and 0.44 W m22 K21 in CESM2, MPI-ESM1.1,
and GISS-E2.1-G, respectively (row 4 of Table 1). However,CSST,u

is 0.59 6 0.04, 0.31 6 0.05, and 0.14 6 0.04 W m22 K21 at the
samemodel order (row 5 of Table 1). As for the EIS contribution,
the spread of unforced feedback is even larger to the extent
that the sign is also uncertain. The term CEIS,u is positive
(0.14 6 0.10W m22 K21) in CESM2, while it is negative in
MPI-ESM1.1 and GISS-E2.1-G (20.39 6 0.11 and 20.62 6

0.08 W m22 K21, respectively; row 8 of Table 1). At the same
time, the forced components have the same negative sign and sim-
ilar magnitudes (CEIS,f 5 20.62,20.86, and20.68 Wm22 K21 in
CESM2, MPI-ESM1.1, and GISS-E2.1-G, respectively; row 7
of Table 1).

c. Attribution of time-evolving low-cloud feedback

As shown in Eqs. (2.3) and (2.4), the temporal evolution of
low-cloud feedbacks CSST and CEIS can be driven by three
possible components: 1) changes in the forced low-cloud feed-
backs CSST,f and CEIS,f, 2) changes in the unforced low-cloud
feedbacks CSST,u and CEIS,u, and 3) changes in the relative im-
portance between the forced and unforced signals, expressed
as the ratio r [Eq. (1.12)]. Since the derivation for CSST and

CEIS is identical, we will drop the subscripts and write the gen-
eral form for low-cloud feedback as

C(t) 5 Cf (t)r(t) 1 Cu(t)[1 2 r(t)] 1 e(t): (2.5)

Here, t indicates a given 30-yr window used to calculate the
feedback and the ratio. For the next 30-yr window, we can
write the same form with t 5 t 1 1. The change in C between
the two adjacent 30-yr windows is then expressed as

dC(t) 5 dCf (t)r(t) 1 dCu(t)[1 2 r(t)] 1 dr(t)[Cf (t) 2 Cu(t)]
1 de(t), (2.6)

where

dX(t) 5 X(t 1 1) 2 X(t), (2.7)

X(t) 5 X(t 1 1) 1 X(t)
2

: (2.8)

The term X can be C, Cf, Cu, or r. To attribute the C differ-
ence between the two nonadjacent windows, for example, the
30-yr windows of 1951–80 and 1981–2010, we can sum all the
dC(t) between the two:

∑
t5198022009

t5195121980
dC(t) 5 ∑

t5198022009

t5195121980
dCf (t)r(t) 1 dCu(t)[1 2 r(t)]
{

1 dr(t)[Cf (t) 2 Cu(t)] 1 de(t)
}
: (2.9)

For clarity, we omit the time index and rewrite Eq. (2.9) into
a more general form:

DC 5∑dCf r 1∑dCu(1 2 r) 1∑dr(Cf 2 Cu ) 1 De:

(2.10)

The symbol D denotes the C difference given two windows
and is simply the sum of all the differences from adjacent win-
dows between the two. Using Eq. (2.10), we attribute the
change in low-cloud feedback between any two windows to
the contribution of forced feedback changes (the first term on
the rhs), followed by the contribution of unforced feedback
changes and the contribution of the ratio changes (the second
and third terms on the rhs). The term De again indicates
the residual, which is associated with the combined effects
from the covariance between forced and unforced signals (see
section 2c for more details).

1) HISTORICAL PERIOD

Figure 2 shows the DC decomposition between the 30-yr
windows of 1951–80 and 1981–2010. In both CESM2 and
MPI-ESM1.1, DCEIS is stronger than DCSST and suggests a
negative shift of low-cloud feedback during this period, con-
sistent with Fig. 1. The decomposition also reveals that the
change in r is the primary reason for the negative shift of
CEIS, shown as strong negative values of the “ratio” term. In
CESM2, all ensemble members agree that the increasing im-
portance of the forced signals (increasing r) leads to negative
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DCEIS (Fig. 2d). More than 75% of the ensemble members in
MPI-ESM1.1 agree with the above result (Fig. 2e). Mean-
while, the change in the forced component gives rise to a
small increase in low-cloud feedback (the “forced” term). The
influence of the unforced feedback change varies among ensem-
bles and has no robust contribution to DC in recent decades (the
“unforced” term). In GISS-E2.1-G, the ratio term contributes to
the weak positive shift of CSST (Fig. 2c). As for DCEIS, the
strength of the forced and unforced components is similar; there-
fore, the contribution of Dr is weak and insignificant (Fig. 2f).

By decomposing the low-cloud feedback change between
1951–80 and 1981–2010, we summarize that the increasing im-
portance of forced signals (increasing r) is the main cause for
the shift in low-cloud feedback over the past few decades in
CESM2 and MPI-ESM1.1 large ensembles.

2) FUTURE WARMING SCENARIOS

In addition to the shift in low-cloud feedback C over the past
few decades, we notice that C also evolves with time in future
warming projections. In general, we find that CEIS becomes more
positive (less stabilizing) throughout the century in the SSP370
simulations of CESM2 and the RCP8.5 simulations of MPI-
ESM1.1, while the change in CSST is relatively weak (Fig. 1).
The result is consistent with previous studies suggesting a less-
stabilizing net radiative feedback over time due to EIS changes
in CO2-increasing simulations (Rose and Rayborn 2016; Ceppi
and Gregory 2017, 2019; Dong et al. 2020; Lin et al. 2021).

To quantify and attribute the change in CEIS, we decom-
pose DCEIS between the current climate (i.e., 1981–2010) and

the projected climate at the end of the century (i.e., 2070–99;
Fig. 3). More than 50% of ensemble members from CESM2
and more than 75% of ensemble members from MPI-ESM1.1
show positive DCEIS in response to future warming. More im-
portantly, this long-term positive change in CEIS arises mainly
from changes in the forced component, shown as strong posi-
tive values of the forced term (Figs. 3c,d). Changes in either
the unforced component (unforced) or the relative impor-
tance between forced and unforced signals (the “ratio” term)
instead lead to a more-negative CEIS for most of the ensemble
members.

4. The role of SST pattern effect

a. Overview

We showed above how the time variation of low-cloud
feedbacks CSST and CEIS depends on changes in SST and EIS
regressions, including their forced and unforced components. To
build a physical understanding that connects the two, we com-
pare the time-evolving SST and EIS regressions among the three
large ensembles (Figs. 4 and 5) and highlight the role of SST pat-
tern effect in setting the time-evolving C. Here, the SST pattern
effect generally refers to the differences in radiative anomalies
(between models or over different time periods) that can be at-
tributed to variations in surface warming patterns (Stevens et al.
2016; Zhou et al. 2017; Dong et al. 2019). The spatial patterns
dSST/dTg and dEIS/dTg are obtained by regressing local SST
and EIS onto global-mean temperature change and separating
into forced and unforced components following Eq. (1.11).

CESM2 MPI-ESM1.1 GISS-E2.1-G

FIG. 2. Decomposition of DCSST between the 30-yr windows of 1951–80 and 1981–2010 in (a) CESM2, (b) MPI-ESM1.1, and (c) GISS-
E2.1-G. (d)–(f) As in (a)–(c), but for DCEIS. The terms forced, unforced, and ratio represent the contributions from changes in forced
feedback, changes in unforced feedback, and changes in r (the relative importance between the forced and unforced feedbacks), respec-
tively. The term De is the residual term. The calculation of each component follows Eq. (2.10) and is shown in the legend. In each box
plot, the orange line indicates the median and the green triangle indicates the ensemble mean.
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For all three large ensembles, the overall SST pattern
dSST/dTg (first column of Fig. 4) is determined by both the
forced component dSSTf /dTg,f (second column) and the un-
forced component dSSTu/dTg,u (third column), depending on
their relative importance indicated by r (Fig. 1; Table 1). The
residual s (fourth column of Fig. 4) remains small throughout
different time periods, again indicating that the assumption
made in section 2c is valid. The forced SST pattern character-
izes a more uniform warming per unit increase in Tg,f, while the
unforced SST pattern is more heterogeneous per unit change in
Tg,u. All three models commonly show this fundamental differ-
ence between the forced and unforced SST patterns from the
preindustrial era to the end of the twenty-first century.

b. Historical period

Within the large ensembles, the unforced SST pattern
is similar to the SST anomalies from the prevailing climate
variability in interannual time scales}El Niño–Southern
Oscillation (ENSO), which we first illustrate for CESM2. Per
unit increase in unforced Tg, there is an enhanced surface
warming in the eastern Pacific (EP) and surface cooling in the
western Pacific (WP) [Fig. 4a(3)]. Due to the small r in the
30-yr window of 1951–80 (r 5 0.24 6 0.07), the overall SST
pattern dSST/dTg also reflects ENSO-like SST features
[Fig. 4a(1)], while the influence of the forced SST pattern is
notably weak [Fig. 4a(2); see Fig. S3 with the relative impor-
tance multiplied]. The surface cooling in the WP convective
regions leads to an overall cooling in the free troposphere in
the tropics, which destabilizes the low-level troposphere (e.g.,

Mauritsen 2016; Andrews and Webb 2018). The destabilization
is particularly strong in the EP because of the substantial con-
trast between free-tropospheric cooling and surface-enhanced
warming [Figs. 5a(1) and 5a(3)]. This low-level destabilization
acts to decrease the marine stratocumulus cloud over the EP
(Wood and Bretherton 2006), accounting for more-positive
low-cloud feedback during this time.

In the 30-yr window of 1981–2010, on the other hand, the
overall SST pattern is strongly affected by the forced signals
(r 5 0.726 0.06). Compared to the unforced SST pattern, the
forced SST pattern is more spatially uniform, with slightly en-
hanced warming in the Northern Hemisphere (NH) and reduced
warming in the Southern Hemisphere (SH). The surface warm-
ing in the WP convective regions is also stronger than that in the
EP stratocumulus cloud regions [Fig. 4b(2)]. As a result, the
overall SST pattern in 1981–2010 is less ENSO-like [Fig. 4b(1)]
compared to that in 1951–80 [Fig. 4a(1)]. Correspondingly, per
unit increase in Tg, the low-level troposphere in the EP shifts
from being strongly unstable in 1951–80 [Fig. 5a(1)] to becom-
ing slightly unstable in 1981–2010 [Fig. 5b(1)]. The 1981–2010
meteorological condition favors low-cloud formation and more-
stabilizing low-cloud feedback in comparison with that in
1951–80.

The abovementioned mechanism applies to all three LEs,
highlighting the distinct forced and unforced SST patterns that
jointly shape the overall SST pattern with time-dependent weight-
ing r for each component. We particularly focus on the warming
contrast between the WP and the EP, which explains the time
variation of low-cloud feedback through modifying low-level

CESM2 MPI-ESM1.1

FIG. 3. As in Fig. 2, but for the DCSST decomposition between the 30-yr windows of 1981–2010 and 2070–99 in
(a) CESM2 and (b) MPI-ESM1.1 and for the DCEIS decomposition between the 30-yr windows of 1981–2010 and
2070–99 in (c) CESM2 and (d) MPI-ESM1.1.
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stability (CEIS), while CSST that quantifies local SST impacts plays
a minor role in adjusting the C variations in recent decades. To
further quantify this radiatively essential SST pattern, we define
the Indo-Pacific warm pool (IPWP) warming ratio as the regional
average of dSST/dTg in the western Pacific convective regions
(308S–308N, 508E–1608W) over the tropical average of dSST/dTg
(308S–308N), consistent with the quantification proposed in Dong
et al. (2019) andWills et al. (2022).

In CESM2, the IPWP index becomes larger from 0.44 6

0.11 in 1951–80 to 0.77 6 0.10 in 1981–2010 (Table 1), associ-
ated with a more-stabilizing low-cloud feedback. The in-
creased IPWP index can be explained by the increase in r,
along with small unforced IPWP indices and large forced
IPWP indices. In MPI-ESM1.1 and GISS-E2.1-G, we also ob-
serve an increase in the IPWP index but both with weaker
magnitudes (Table 1). Given the similar time evolution of r
among models and the large intermodel spread of unforced
CEIS, we propose that the intermodel spread of IPWP time
evolution arises mostly from the unforced IPWP index.

Indeed, all three models produce similar forced IPWP indi-
ces, ranging from 0.97 to 1.09 in 1951–80 and 1.03 to 1.09 in
1981–2010. The close-to-unity values in both time periods in-
dicate that the WP warming is similar to the overall warming
in the tropics (i.e., spatially uniform forced SST responses).
However, the unforced IPWP index varies widely among
models. In 1951–80, IPWPu is 0.30 6 0.10 in CESM2, associ-
ated with the ENSO-like unforced SST pattern in which sur-
face cooling occurs in the WP convective regions [Fig. 4a(3)].
Meanwhile, this WP cooling is much more limited and weaker
in MPI-ESM1.1 despite the model still projecting an ENSO-
like unforced SST pattern [Fig. 4d(3)]. In GISS-E2.1-G, there
is barely any cooling in the WP convective regions. Surface
warming is strong in both the tropical WP and EP regions
[Fig. 4g(3)]. This weak-to-no cooling in the WP region would
correspond to a higher IPWP index in both models (0.70 6

0.07 in MPI-ESM1.1 and 0.73 6 0.04 in GISS-E2.1-G) in
1951–80, limiting the IPWP increase in 1981–2010 when
forced signals have become more dominant. In summary, the
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FIG. 4. (from left to right) Overall SST pattern dT/dTg, the forced component dTf /dTg,f , the unforced component dTu/dTg,u, and the re-
sidual term s calculated from different 30-yr windows in the three AOGCM LEs. For each panel, the 30-yr window and the LEs used are
labeled on the left. In the overall and unforced SST patterns, contours indicate the ensemble mean and stippling indicates the regions
where the one STD calculated across ensembles is larger than the ensemble-mean values. For the forced SST pattern, no stippling is
shown since it is calculated based on the ensemble-mean fields before applying the OLS regression.
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large intermodel spread of unforced WP relative warming
IPWPu echoes the large spread of unforced CEIS,u (Fig. 1),
which is responsible not only for the intermodel spread of
CEIS but also for the diverse time evolution of CEIS among
models.

c. Future warming scenarios

The relative importance of the forced response r outweighs
the unforced variability for the 30-yr window ending around
the 2010s and becomes increasingly dominant over time
since then. At the end of the twenty-first century, r reaches
0.85–0.95, depending on the models and warming scenarios
(Fig. 1). Comparing the SST patterns between the windows of
1981–2010 and 2070–99, we find that the changes in the over-
all SST pattern arise mostly from the changes in the forced
component, except that some of the tropical regions are still
influenced by unforced variability in the earlier period.
The result is expected since r has been large, indicating a weak
influence from the unforced variability. The change in forced
SST pattern features delayed warming in the southeastern Pacific
and the Southern Ocean [comparing Fig. 4b(2) and Fig. 4c(2) for

CESM2; Fig. 4e(2) and Fig. 4f(2) for MPI-ESM1.1], corre-
sponding to a decrease in the forced IPWP index (from
1.03 to 1.00 in CESM2; 1.09 to 1.06 in MPI-ESM1.1). The
change in the SST pattern in turn leads to a less-positive
EIS in the southeastern Pacific [comparing Fig. 5b(2) and
Fig. 5c(2) for CESM2; Fig. 5e(2) and Fig. 5f(2) for MPI-
ESM1.1] and a less-stabilizing CEIS. The time-evolving SST and
EIS patterns explain the forced contribution to the positive DCEIS

shown in Fig. 3, highlighting the role of the pattern effect.
Despite the weak influence of unforced variability on over-

all C in future projections (small r), there is a negative trend of
unforced CEIS in CESM2 (Fig. 1m), which can also be under-
stood through the pattern effect. During the 1981–2010 win-
dow, the strong ENSO-like unforced SST pattern [Fig. 4b(3)]
corresponds to a small IPWPu (0.32 6 0.10; Table 1). How-
ever, the WP warming becomes stronger near the end of the
century [Fig. 4c(3)], corresponding to a higher IPWPu index
(0.47 6 0.11; Table 1) and a more-negative unforced CEIS.
The reasons for the time evolution of the unforced SST pat-
tern are beyond the scope of this study and require further
research.
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FIG. 5. As in Fig. 4, but for the overall EIS pattern dEIS/dTg, the forced component dEISf /dTg,f , the unforced component dEISu/dTg,u,
and the residual term s calculated from each 30-yr window in each AOGCM LEs.
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5. Impacts of individual forcing agents

a. Single-forcing large ensembles

In previous sections, we separate the forced and unforced
components of SST/EIS patterns and the corresponding low-
cloud feedback through initial-condition large ensembles. We
also highlight the increasing importance of the forced compo-
nent in modulating low-cloud feedback over the past few dec-
ades. The forced component is induced by the full historical
and future radiative forcing that comprises different forcing
agents. Previous studies have suggested that varying combina-
tions of forcing agents can lead to changes in radiative feed-
backs (Marvel et al. 2016; Gregory et al. 2020; Günther et al.
2022; Salvi et al. 2023; Zhou et al. 2023). Here, we place addi-
tional emphasis on understanding how the various forcing
agents contribute to the relative importance of the forced and
unforced components shown in the preceding sections. Specifi-
cally, we ask whether different combinations of forcing agents
would shift the crossover time of forced responses compared
to unforced variations.

To address the question, we leverage single-forcing large
ensembles in several AOGCMs, where each simulation is per-
turbed with a specific type of forcing evolving over time. Forc-
ing types other than the designated forcing are held fixed,
allowing for isolating the impacts of individual forcings. For
example, CESM2 single-forcing large ensembles (Simpson

et al. 2023) include simulations where only “GHG,” or anthro-
pogenic aerosols (“AAER”), or biomass burning aerosols
(“BMB”) evolve, and simulations where all other forcings evolve
except for GHG, AAER, or BMB (everything else evolving or
“EE”; Table S2). In addition to CESM2, we investigate four
other single-forcing large ensembles that participated in the
Detection and Attribution Model Intercomparison Project
(DAMIP; Ribes et al. 2015; Gillett et al. 2016), namely,
CanESM5, GISS-E2.1-G, HadGEM3-GC3.1-LL, and MIROC6.
In DAMIP, single-forcing experiments include simulations where
only greenhouse gases (“hist-GHG”), or aerosols (“hist-aer”), or
natural forcings evolve (such as solar and volcanic forcings; “hist-
nat”). We selected models with at least 10 ensembles for each
single-forcing experiment and at least 40 ensembles for the all-
forcing simulation at the time of analysis. An exception is our in-
house model GISS-E2.1-G, which has only five members in the
AAER simulation (Table S3). Note that the aerosol forcing in
DAMIP hist-aer includes both anthropogenic and biomass-
burning aerosols, while the two are separated in CESM2
single-forcing large ensembles.

b. Compensation between anthropogenic aerosols and
greenhouse gases

Figure 6 illustrates the forced and unforced Tg associated
with each forcing agent in CESM2. The GHG-forced Tg

shows a rising trend as expected [Fig. 6a(1)]. The variance of

FIG. 6. As in Fig. 1, but for each CESM2 single-forcing experiment. (a) Time evolution of forced (red; y axis on the left) and unforced
(blue; y axis on the right) Tg in CESM2 [a(1)] GHGs, [a(2)] AAERs, [a(3)] BMBs, and [a(4)] EE evolving simulations. (b) Time
evolution of the variance of Tg (black), Tg,f (red), and Tg,u (blue) in each single-forcing ensemble. (c) The ratio of the Tg,f variance
[red; r defined in Eq. (1.12)] and the ratio of the Tg,u variance [blue; (1 2 r)] in each single-forcing large ensembles. Note that the
x axis marks the year in (a), while it denotes the end year of 30-yr moving windows in (b) and (c). For each panel, dark-colored lines
indicate the ensemble mean and light-colored lines show each ensemble member. The two vertical green lines in (b) and (c) mark
the end years of 1980 and 2010, which respectively indicate the results from 1951–80 and 1981–2010 windows that we focus on.
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GHG-forced Tg also increases over time, reflecting a stronger
GHG-forced warming rate in late periods, especially for the
30-yr windows ending after the 1980s [Fig. 6b(1)]. On the
other hand, anthropogenic-aerosol-forced Tg generally de-
creases over time, with a stronger decreasing trend from the
1950s to the 1980s [Fig. 6a(2)], corresponding to a local maximum
of Tg,f variance around the 30-yr window of 1951–80 [the first
green line in Fig. 6b(2)]. Unlike the GHG and AAER simula-
tions, the forced Tg in the BMB and EE simulations varies weakly
throughout the historical period [Figs. 6a(3) and 6a(4)] and its
forced Tg variance is consistently much weaker than the unforced
Tg variance [Figs. 6b(3) and 6b(4)]. The forced Tg variance in the
EE simulations exhibits slightly stronger temporal variation that
highlights the global-mean cooling from historical volcanic erup-
tions [Fig. 6b(4), as discussed in section 2d].

Figure 6c shows the relative importance of forced regres-
sions [expressed as r; Eq. (1.12)] and unforced regressions
(1 2 r) across various single-forcing experiments. Within
these single-forcing ensembles, the time evolution of r in
GHG-only ensembles shows a resemblance to those in large
ensembles where all forcings are time-dependent. Such simi-
larity suggests that the growing importance of forced re-
sponses in all-forcing large ensembles is primarily due to
emissions of GHGs. Furthermore, we emphasize that the
transition from a domination of unforced regressions (r, 0.5)
to a domination of forced regressions (r . 0.5) occurs about
20 years earlier in GHG-only ensembles than in all-forcing
ensembles. The transition period is around the 1951–80 win-
dow in GHG-only ensembles [Fig. 6c(1)] and around the
1971–2000 window in all-forcing ensembles (Fig. 1g).

The delayed transition in all-forcing ensembles can be un-
derstood through the compensating effect on global-mean
temperatures between anthropogenic aerosols and green-
house gases forcings (Deser et al. 2020), which is particularly
pronounced from the 1950s to the 1980s. During this time, the
global-mean cooling induced by anthropogenic aerosols par-
tially offsets the global-mean warming from greenhouse gases
(compare Tg,f time evolution in Fig. 6a), leading to weaker warm-
ing in all-forcing ensembles. In the absence of such compensa-
tion, the GHG-forced warming would have outweighed the
unforced temperature variation starting from the 30-yr window
of 1951–80 [Fig. 6c(1)]. The aerosol-forced cooling trends weaken
post-1980s, corresponding to the overall maximum of r around
the 1951–80 window [Fig. 6c(2)]. In turn, this implies that aerosol
forcing has potentially delayed the transition to a more-negative
low-cloud feedback by masking GHG-forced warming.

Despite our main focus on CESM2, we highlight that multi-
ple AOGCMs agree on the 10–20 years of shift in forced tem-
perature domination between all-forcing large ensembles and
GHG-only experiments (Fig. 7). For example, the crossover
of r . 0.5 in CanESM5 all-forcing ensembles occurs around
the 1951–80 window (Fig. 7a), which is about 10 years later
compared to GHG-only ensembles (1941–70 window; Fig. 7b).
In GISS-E2.1-G, the crossover occurs around the 1971–2000
window (Fig. 7e, identical to Fig. 1i), which is about 20 years
later than in GHG-only ensembles (1951–80 window; Fig. 7f).
In HadGEM3-GC3.1-LL, the crossover happens around the
1961–90 window (Fig. 7i), about 20 years later compared to

GHG-only ensembles (1941–70 window; Fig. 7j). Last, in
MIROC6, the unforced temperature variance is much stronger
than the forced temperature variance throughout the historical
period, and the crossover of forced variance barely happens
within the historical period (Fig. 7m).

When interpreting results from single-forcing large ensem-
bles, it is important to note potential nonlinearities, where the
responses from individual forcings may not sum to the all-
forcing responses (Simpson et al. 2023). This nonlinearity
could introduce uncertainty in assessing the relative strength
of each forcing agent in shaping the time evolution of radia-
tive feedbacks. Also, while we focus on the compensating
effect between GHG-forced and aerosol-forced Tg and its im-
plications for the relative contributions of forced and un-
forced feedbacks, it is important to note that the SST spatial
patterns resulting from each forcing can differ significantly
(Salvi et al. 2023). These differences in forced SST patterns
can influence the time evolution of forced feedback through
the pattern effect, as discussed in detail in section 4.

6. Summary and discussion

This research examines the role of the SST pattern effect in
driving the time-varying low-cloud feedback (C), with a par-
ticular focus on the relative importance between forced re-
sponses and unforced variability. We provide evidence that
the time variation of C estimated via OLS regressions can be
attributed to three main contributors: changes in its forced
component, changes in its unforced component, and changes
in the relative importance between the forced and unforced
components (see sections 2c and 3c for more details).

Using initial-condition large ensembles, we find that the un-
forced signals outweigh the forced signals for 30-yr windows
ending prior to the 1980s (Figs. 1g–i and 7a,e,i,m); thus, the
overall SST and EIS patterns are strongly influenced by the
unforced components, characterizing ENSO-like surface con-
ditions (Figs. 4 and 5). For 30-yr windows ending after the
1980s, the forced signals have strengthened, surpassing un-
forced signals around 30-yr windows ending between the
2000s and the 2010s (Figs. 1g–i and 7a,e,i,m). The transition
time toward the domination of forced components involves the
compensation on global-mean temperatures from greenhouse
gases and aerosols. If only greenhouse gases are time-evolving,
the transition time would occur 10–20 years earlier than in the
all-forcing simulations (compare r in Figs. 1, 6, and 7). Since the
forced SST patterns are relatively uniform (the second column of
Fig. 4), the overall SST patterns after the 1980s have become less
heterogeneous (the first column of Fig. 4). The time-evolving
SST pattern gives rise to changes in low-cloud feedback CSST di-
rectly and through modifying low-level stability (CEIS). The terms
CSST and CEIS are the low-cloud radiative feedbacks due to
changes in SST and EIS, respectively. Most of the ensemble
members in CESM2 and MPI-ESM1.1 agree on the stabilizing
shift of CEIS in the recent 30–50 years, with a magnitude larger
than the change in CSST. More importantly, we find that the in-
creasing importance of forced signals is the dominant contributor
to the negative shift of CEIS over the past few decades within
climate models (Fig. 2). These results suggest that a similar
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transition toward an increasing importance of the forced signal
may have contributed to the negative shift inCEIS in observations
as well.

The research highlights the crucial role of strengthening
forced responses relative to unforced variations in modifying
low-cloud feedback, especially within recent decades when
the overall radiative feedback shifts from being dominated by
unforced signals to being dominated by forced signals. This
shift can lead to large apparent time variations in feedbacks
that are distinct from the type of pattern-effect mechanisms
related to ocean heat uptake that are invoked to explain time-
varying feedbacks in CO2 doubling or quadrupling simula-
tions. Rather, the time-evolving pattern described here arises
from the fact that OLS estimates have a time-varying mix of
forced and unforced SST patterns and feedbacks. Thus, a
“pattern effect” may arise even if both forced and unforced
patterns are themselves time-invariant. Therefore, we suggest
that the forced and unforced components of the radiative
feedbacks should be evaluated separately.
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FIG. 7. Relative importance of the forced regressions r (red) and unforced regressions [(1 2 r); blue] in (a) all-forcing LEs, (b) hist-
GHG, (c) hist-aer, and (d) hist-nat experiments in CanESM5. Other rows are as in (a)–(d), but for (e)–(h) GISS-E2.1-G, (i)–(l)
HadGEM3-GC3.1-LL, and (m)–(p) MIROC6. Dark-colored lines show the ensemble mean, and light-colored lines show individual en-
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data from the Max Planck Institute for Meteorology can be down-
loaded from https://www.mpimet.mpg.de/en/grand-ensemble/. The
large ensemble data from other models used in this study
(including GISS-E2.1-G, CanESM5, HadGEM3-GC3.1-LL,
and MIROC6) can be downloaded from the ESGF portal
(https://esgf-node.llnl.gov/search/cmip6/). The meteorological
cloud radiative kernels were developed by Scott et al. (2020)
and can be downloaded from https://github.com/tamyers87/
meteorological_cloud_radiative_kernels.
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